Future of S&T: Evaluation of the Prospects of Mature and Emerging Technologies #### Alexander Chulok XIII April international Academic Conference on Economic and Social Development > Moscow, HSE, 4 April 2011 ### Contents #### S&T Foresight: - general framework - sources and databases - two groups of outcomes - networks of experts #### First results: - perspectives for Russia evidence from research fronts - scientific areas of emerging technologies - "white spots" and breaking-through windows - challenges and windows of opportunities for mature technologies - S&T Foresight outcomes: possible ways of use ## **S&T Foresight: general framework** 000000 ### **S&T Foresight: sources and databases** **≻Global Challenges and Global** Responses >Changing role of S&T Foresight in S&T and innovation policy New S&T instruments #### **Results of previous S&T Foresight** 3rd Cycle of S&T Foresight **Results of previous sectoral Foresight** - In-depth analysis - Consideration of global challenges - Three dimensions: What? How? Who? - Detailed description of results: "first sprouts" and technology packages passports - Identification of centres of excellence and gaps - > Results of the government S&T programs - > Critical technologies' passports - > Industrial strategies, RF government programmes, etc. - > Technology platforms and available roadmaps - > International systemic forecasts and framework documents (FP7, Japanese Delphi, etc.) ### **S&T Foresight: two groups of outcomes** **Priority areas** Key challenges until 2030 Technologies and technological solutions with a potential to contribute to dealing with key challenges te pa Description of technology packages **Energy and energy efficiency** Information and communication systems **Biotechnologies** **Medicine and health** New materials and nanotechnology **Transport and space systems** Rational use of nature Pull **Technology packages** **Young sprouts** **Push** techno-economical indicators Criteria 1 (radical increase in **Key features** Groups of products and technologies with a potential to deal with critical problems and major challenges Breakthrough technologies and product groups expected to be particularly important in 2020-2030 **Description format** - 1. Leading countries, Russian teams - 2. Management solutions (policies) - 3. Time of emergence and application - 4. Financial resources - 5. Infrastructure solutions - 6. Required competencies ## **S&T Foresight: networks of experts** - ✓ Members of Government Academies of Science - **✓ CEO** of leading companies - ✓ Members of High Technologies and Innovation Commission - ✓ Members of industrial work groups and councils at relevant ministries - ✓ Developers of industrial strategies - ✓ Members of leading industrial and academic institutes - ✓ Experts with the highest citation index ## First results: perspectives for Russia – evidence from research fronts Legend: the oval area represents the number of fronts in each priority research (vertical axis); the number in the oval represents the total number of articles (by front) – (there may be 4 fronts with 2 articles on each and 1 with 8 articles); red indicates presence of articles by Russian authors; for each year, front names and maximum number of articles (in brackets) are indicated. Source: ISSEK calculations based on Web of Science and Essential Science Indicators data (Thomson, *Reuters*). - ✓ Research front highly cited publications identified through clustering - ✓ Publications (co)authored by Russians are present in 15% of research fronts - ✓ Share of Russian publications is 1% - ✓ The highest contribution of Russian authors is in Life Sciences and Nanosystems Industry publications - ✓ The biggest gaps are in Transport and Space Systems and Energy Saving areas # First results: scientific areas of emerging technologies ## Scientific areas: "white spots" and breaking-through windows (first results) Technologies for mathematical modelling and optimisation of next-generation power generating and related installations' schemes and parameters Functional structure composite materials for dental and maxillofacial implants Human proteome profiling High-temperature and durable turbine buckets Climate and climate change modelling Technologies for separating and purifying gaseous mixtures and liquids Next-generation engineering systems for energyefficient buildings Detoxication of air and water environments Wireless energy transfer Traffic flows' and transport systems' intelligent management systems' models Software systems' prototypes for real-time analysis of complex 3D images and videos Tissue equivalents and artificial live human organs Techniques to cultivate marine organisms' cell Significantly below the world level: "white spots" Certain achievements: opportunities to increase competencies to the world level Parity - on a par with the world level or immediately below it; opportunities to join forces and increase efficiency the leading position, or make a technological breakthrough ly below it; ties to join High-temperature superconductivity World leader - opportunity to keep Chemistry of solids Nanosize catalysts and membranes for deep integrated processing of raw materials Biotechnological processes for producing industrial and medical bioproducts in plants and animals Bio-testing and bio-indication techniques offering increased sensitivity and selectivity Computational systems' component prototypes New distributed computing principles Materials diagnostics Technologies for deep processing of organic fuels #### State-of-the-art # First results: challenges and windows of opportunities for mature technologies | Medicine and health | Transport systems | Energy | |---|---|---| | Increase of cancer rates Proliferation of city diseases Lack of organs and tissues for transplanting High mortality rate Small towns and villages do not have advanced medical facilities nearby Inefficient rehabilitation system | Stricter environmental requirements Increased energy saving requirements Safety on transport Low energy efficiency and reliability of vehicles Inefficient monocentric radial structure of the transportation network | Increased global energy consumption Exhaustion of cheap conventional energy resources Vulnerability of power infrastructure Low oil recovery ratio at traditional oilfields Low efficiency of gas steamturbine plants High energy waste in the grids | | Potential technological response areas ✓ Gene and cell therapy ✓ Drug delivery and localisation systems ✓ Biocompatible non-degradable materials | ✓ Hybrid automobile engines ✓ Low-carbon sustainable vehicles ✓ Intelligent transport networks | ✓ Highly efficient heat and power natural gas based plants ✓ New technologies for burning organic fuels New hydrogen production, storage and consumption technologies | ## Two groups of S&T Foresight outcomes: possible ways of use # Thank you for your attention! achulok@hse.ru